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1. Introduction

The moduli space of curves Mg plays a central role in many areas of mathematics from
low-dimensional topology to algebraic geometry. For examples, it parametrizes conformal
structures, hyperbolic surfaces, and complex curves. The natural setting for studying
dynamical systems on Mg is in vector bundles over it, which encode both initial starting
points and flow directions. One key example is the Hodge bundle over Mg, which parametrizes
all possible genus g translation surfaces. Translation surfaces are vital for understanding
the dynamical and geometric properties of Mg. My research combines dynamics, algebraic
geometry, and other techniques to analyze these flat surfaces and their moduli, deepening
our understanding of the topology and geometry of Mg.

Concretely, translation surfaces are pairs (X, ω), where X is a Riemann surface and ω
is a holomorphic 1-form. The 1-form ω provides a polygonal decomposition of X where
parallel opposite edges are identified by translations. Deforming these edges (while preserving
parallelism) produces nearby translation surfaces in the stratum ΩMg(κ1, . . . , κs), the moduli
space of genus g translation surfaces with specified cone angle singularities. The union of
these strata forms the Hodge bundle over Mg. There is an essential SL(2,R)-action on strata
of translation surfaces, where a matrix in SL(2,R) acts linearly on a polygonal representation
of the translation surface. This dynamical action enriches the classical geodesic flow on Mg,
corresponding to the diagonal subgroup of SL(2,R).

My research focuses on deepening our understanding of this SL(2,R)-action, particularly
the structure of its orbit closures. In particular, I have studied periodic points on closed
SL(2,R)-orbits, as well as the monodromy groups of families of translation surfaces over these
orbits. This work not only enhances our knowledge of moduli spaces of translation surfaces
but also contributes to related fields such as number theory, low-dimensional topology, and
computational and algebraic geometry.

In the following sections, I outline future research directions. Section 2 discusses how we
will extend our classification of periodic points from Veech surfaces to new affine invariant
subvarieties. Section 3 explores computations of monodromy groups of families of translation
surfaces and connections to smooth 4-manifolds and the Putman-Wieland conjecture on
the homological actions of surface automorphisms. Section 4 presents ongoing work on the
isodelaunay decomposition of strata.

2. Periodic Points

Let (X, ω) be a Veech surface, that is, a translation surface whose SL(2,R)-orbit is closed
in its stratum. A periodic point of a Veech surface (X, ω) is a point that has a finite orbit
under the affine automorphism group Aff+(X, ω). Examples include the Weierstrass points
of a hyperelliptic surface and points of a square torus with rational coordinates. These points
have appeared throughout Teichmüller dynamics, from counting sections of Veech fibrations
(see Section 2) to solving finite-blocking problems in polygonal billiards (see, e.g., [1, 2, 5]).
Exceptional periodic points have even provided evidence for the existence of higher-rank orbit
closures before their formal discovery [1].

Question 1. Given a Veech surface (X, ω), what are its periodic points?



2.1. Algorithm for general Veech surfaces. Gutkin–Hubert–Schmidt [24] and Eskin–
Filip–Wright [16] showed that a non square-tiled Veech surface has finitely many periodic
points. While other authors had addressed specific Veech surfaces and computed their finite
set of periodic points [4, 42], there was no general method for finding the periodic points
of an arbitrary Veech surface. Zawad Chowdhury, Samuel Everett, Destine Lee and I then
developed a general algorithm in [15] for computing the periodic points on an arbitrary Veech
surface; our proof of correctness is a new proof that a non-square-tiled Veech surface has
finitely many periodic points:

Theorem A (Chowdhury–Everett–Freedman–Lee [15]). There is an algorithm for computing
the periodic points of a non-square-tiled Veech surface.

Corollary B. A non-square-tiled Veech surface has finitely many periodic points.

The algorithm in Theorem A uses techniques from mapping class groups, dynamics, and
combinatorics to prune candidate periodic points in stages. First, it finds points periodic
under two multi-twists, and uses that (X, ω) is not square-tiled to limit candidates to a
set of line segments. Then, it constructs an automorphism ϕ ∈ Aff+(X, ω) that moves the
segments transversely, further restricting the candidates to their intersections. Finally, a
graph algorithm identifies which intersection points are periodic under all of Aff+(X, ω).

2.2. Prym eigenforms. As an application of the algorithm in Theorem A, we analyzed a
class of genus 3 Veech surfaces whose periodic points had not yet been classified called Prym
eigenforms [35]. These surfaces in the stratum ΩM3(4) come with a Prym involution that
acts as rotation by π on the surface. After testing small complexity examples, we conjectured
that the periodic points were exactly the fixed points of the Prym involution. In a second
paper [20], I established this conjecture not only for genus 3 Prym eigenforms, but also for
the other minimal Prym eigenforms in genus 2 and 4; the genus 2 case is a new geometric
proof of a theorem of Möller [38].

Theorem C (Freedman [20]). The periodic points of a non square-tiled Prym eigenform in
the stratum ΩMg(2g − 2) for 2 ≤ g ≤ 4 are the fixed points of its Prym involution.

The proof of Theorem C applies uniformly to all three Prym eigenform genera, following
the algorithm in Theorem A. A general lemma uses techniques from mapping class groups
to first reduce the search to a finite set of horizontal and vertical saddle connections by
classifying points periodic under two multi-twists. To eliminate false candidates, I adapt
McMullen’s butterfly moves [34], a collection of GL(2,R)-renormalizations that exchange
between different periodic directions. These automorphisms displace nonperiodic points in
all sufficiently high-complexity eigenform loci, leaving only the fixed points as periodic.

2.3. Periodic points of other orbit closures. With both an algorithm (Theorem A) to
compute periodic points, and the general theory I developed for analyzing Prym eigenforms
in Theorem C, I am in a strong position to classify periodic points on other Veech surfaces
and their analogues. For instance, there are Veech surfaces whose periodic points are not yet
classified:

Problem 2. Classify the periodic points of the remaining known primitive Veech surfaces.

For example, the Gothic Veech surfaces [17, 36] come with involutions in their defining
data, as in the case of Prym eigenforms, so we find it natural to conjecture that their fixed



points are again the only periodic points. As for the remaining Bouw–Möller surfaces, I
plan to combine our newly established techniques, such as using butterfly moves to find
uniform structure in Veech groups, with the previous work of Apisa–Saavedra–Zhang [4]
and B. Wright [42] to establish that the periodic points are exactly the fixed points of the
hyperelliptic involution.

To tackle these problems, I will also draw from my expertise analyzing non-minimal Prym
eigenforms in my work with Boulanger that shows

Theorem D (Boulanger-Freedman [11]). There are no Prym eigenform Veech surfaces in
ΩM3(2, 2).

This work required a careful enumeration of prototypical eigenforms in non-minimal Prym
strata. Such prototypes might also admit a theory of butterfly moves, leading to admissible
cylinder shears essential to ruling out points as being periodic.

Question 3. Are all periodic points of Veech surfaces the fixed points of an automorphism?

In addition to analyzing specific cases, our analysis of the linear-algebraic constraints in [15]
has led me to conjecture that well-chosen affine shears are sufficient for classifying periodic
points:

Conjecture 1. If a point on a Veech surface has a finite orbit under three well-chosen
independent cylinder shears, then that point should be a periodic point.

My work in Theorem C verifies this conjecture for Prym eigenforms in genus 2, where
three well-chosen butterfly moves are sufficient, and we expect that further arguments could
establish it for genus 3 and 4. As cylinder shears are concrete and highly amenable to
computation, this would prove a powerful result for classifying periodic points in future cases.

I will also consider the notion of M-periodic points, a generalization of periodic points
from Veech surfaces to all affine invariant subvarieties M such as entire strata of translation
surfaces.

Problem 4. Classify the M-periodic points of higher-rank affine invariant subvarieties M,
such as Prym loci in non-minimal strata.

I propose to classify M-periodic points with an inductive strategy, degenerating surfaces in
M to simpler Veech surfaces. This strategy proved effective when Apisa [2] used Möller’s [38]
determination of periodic points in genus 2 to classify M-periodic points of rank 2 eigenform
loci in ΩM2. Analogously, I will degenerate Prym eigenforms in non-minimal strata to the
minimal Prym eigenforms classified in Theorem C, determining which points of the original
eigenforms are M-periodic. I believe that recent advances in compactifications of strata, like
the multi-scale differentials compactification [7], will make these degeneration arguments
especially effective.

3. Families of Veech surfaces

We will describe a natural construction, originally due to Möller [39], which packages a
family of Veech surfaces into a cohesive algebro-geometric structure as in the case of Lefschetz
fibrations from 4-manifold theory. They originated as a tool in Teichmüller dynamics for
giving a Hodge-theoretic characterization of Teichmüller curves [39], and other others have
used them for constructing new Teichmüller curves [12], establishing non-varying properties



for sums of Lyapunov exponents [14], and classifying algebraically primitive Teichmüller
curves [28, 32, 37]. What is more, periodic points are exactly the holomorphic sections of
these families. After describing the construction, we will describe our computations with
Lucas [21] of the monodromy of these families, its essential invariant measuring how the
fibers change with respect to the topology of the moduli space.

3.1. Construction of Veech fibrations. Let (X, ω) be a Veech surface generating a
closed SL(2,R)-orbit in its stratum. The image of this closed orbit in moduli space is a
geodesically-immersed hyperbolic surface, or a Teichmüller curve C → Mg.

As Mg and C are in general orbifolds, to build a family of Veech surfaces containing (X, ω)
we must first choose a manifold cover M̃ of Mg. We can then pull back C to a hyperbolic
surface B → C that maps into the cover M̃. Now B has a natural family of Veech surfaces
over it, and after passing to a further finite cover, this family extends to a complex surface
X → B.

It is more convenient to work with closed complex surfaces, which we can achieve using
the general process of (semi-stable) completion. The resulting family X̃ → B is now a
smooth closed 4-manifold. The space X̃ is a fibration where all but finitely many fibers are
deformations of the original Veech surface (X, ω), and there finitely many singular fibers over
the cusps of B. In analogy with elliptic fibrations, where the generic fiber is an elliptic curve,
we call these families Veech fibrations.

3.2. Monodromy for algebraically primitive examples. Let (X, ω) be a Veech surface
with Teichmüller curve C. A natural, concrete class of manifold covers of Mg are the level m
congruence subgroups of the mapping class group Mod(X), which measure how the mapping
class groups acts on homology H1(X;Z/mZ). Let Bm → C be the corresponding cover of
hyperbolic surfaces and X̃m → Bm the level m congruence Veech fibrations. Lucas and I
used earlier work of Chen-Möller [14] to derive formulas for a variety of topological and
complex-geometric invariants of the family, such as its fundamental group and signature, in
terms of the cover Bm → C.

Computing the degree of the cover Bm → C amounts to compute the image of the mod
m homology actions ρm : Aff+(X, ω) → Sp(H1(X;Z/mZ)). This task is in general quite
difficult, as it relates to computing Kontsevich–Zorich monodromy groups, which are not
well-understood (see, e.g., Filip [19, 18] and Matheus–Möller–Yoccoz [31]). But in the case
when (X, ω) is algebraically primitive (i.e., has a high-degree trace field) we determined the
degree of the congruence covers Bm → C, and we derived topological and complex-geometric
information about the fibration X̃m:

Theorem E (Freedman-Lucas [21]). Let (X, ω) be a genus 2 Weierstrass eigenform in
ΩM2(2) with nonsquare discriminant [33], an algebraically primitive regular n-gon surface
[12], or a sporadic Veech surface E7 and E8 [29]. For a prime p ≥ 3 in an explicit infinite
set depending on (X, ω), the image of the monodromy map ρm is isomorphic to SL(2,Fpg).

The three families in Theorem E comprise all known algebraically primitive Veech surfaces.
Arithmetic techniques are key to our arguments, since algebraically primitive Veech surfaces
admit real multiplication by their trace field on the entirety of their first homology H1(X) [39].
This theorem allows us to explicitly compute Chern numbers for many algebraically primitive
Veech fibrations, settling them in the geography of all complex surfaces.



3.3. Families over other affine invariant subvarieties. Our work with Lucas [21]
considered Veech fibrations whose base Teichmüller curves are algebraically primitive. While
this family is a rich class of examples, other important Veech surfaces, such as square-tiled
surfaces and non-minimal Prym eigenforms in genus 3 and 4, are not algebraically primitive.
The primary difficulty is again to determine the image of the monodromy.

Problem 5. Compute the image of the monodromy ρm : Aff+(X, ω) → Sp(H1(X;Fm)) for
Veech surfaces (X, ω) that are not algebraically primitive.

Analysis of the representation ρm in the non algebraically primitive case is more difficult
because non-primitive surfaces admit real multiplication on only part of H1(X). But there
are techniques from the algebraically primitive case, such as using Dickson’s criterion [23] to
bound the image of ρm, that do apply to general Veech fibrations.

3.4. Putman-Wieland Conjecture. The Putman–Wieland conjecture [40], equivalent to
Ivanov’s conjecture on the homology of finite-index subgroups of the mapping class group,
predicts that homological actions of surface automorphisms along branched covers are “as
complex as possible.” While Landesman-Litt [27] proved the conjecture for covers of degree
less than g2, where g is the genus of the base surface, many cases remain open.

Counterexamples from flat geometry arise in genus one, such as the well-known Eierlegende
Wollmilchsau square-tiled surface, where the homological actions can have large fixed parts.
Apisa [3] suggested a rephrasing of the conjecture, showing that any potential counterexample
can be expressed as a cover of square-tiled surfaces. The key is then finding new covers
O′ → O where Aff+(O) acts compactly on a large part of the homology, captured by the
Forni subspace of H1(O′;Q).

Problem 6. Find new examples of covers of square-tiled surfaces whose Forni subspaces are
nontrivial, establishing new counterexamples or cases of the Putman–Wieland conjecture.

A quantitative version of this problem appears in Landesman–Litt [26], where they ask
for the distribution of dimensions of Forni subspaces across families of square-tiled surfaces.
These statistics could help make more precise predictions about the nature of Forni subspaces.
We will leverage our past experience [21] computing monodromy groups and computational
methods like the Flatsurf software package to address the case of Forni subspaces of square-
tiled surfaces. These computations could shed new light on the remaining cases of the
Putman–Wieland conjecture.

4. Isodelaunay Decomposition of Strata of Translation Surfaces

The topology of strata of translation surfaces is still largely mysterious. While Kontse-
vich [25] conjectured that strata are K(π, 1)-spaces, this has been verified only for strata of
low complexity [30]. One concrete approach for studying the homology of strata would be to
decompose them into a cell complex. Similar to how Mg has a cell complex based on the
combinatorics of ribbon graphs, we can partition translation surfaces by the combinatorial
type of their Delaunay decomposition. This Delaunay decomposition, generically a triangula-
tion, is canonically defined and features polygons that maximize the minimal angle across the
decomposition. This makes Delaunay triangulations crucial tools in mathematical modeling,
numerical analysis, and other applied disciplines.

Little is known about these regions in the strata, including whether they are connected or
are even cells (i.e., contractible), partly due to the complexity of the quartic equations defining



them. In work-in-progress with Zykoski, computations and heuristics from low-complexity
cases suggest the following conjecture:

Conjecture 2. The isodelaunay cells in strata of translation surfaces are contractible.

Our approach, inspired by the work of Rivin [41] and Bobenko-Springborn [9], is to
establish convexity for natural functions defined on isodelaunay cells, such as harmonic index
H(τ) = ∑

T ∈τ

∑
e∈T ℓ(e)2/Area(T ) which measures how far from equilateral the polygons are.

As these gradient flows tend to keep polygons from being too thin, they stay away from the
boundaries of their regions and tend to our conjectural critical points. In fact, computer
simulation of these gradient flow suggests that the extract structure of the critical point in
many cases is of a sheared square-tiled surface.

With these Delaunay cells in hand, we will then analyze the geometric and homological
properties of this decomposition:

Problem 7. Enumerate all the possible isodelaunay cells in each strata. Show that the
intersections of multiple cells are themselves contractible. Compute the cellular homology
groups of strata using the isodelaunay cell complex

Our work [15] on periodic points used Delaunay triangulations in an essential way, so
we expect to leverage this experience. After solving these problems, we can use Delaunay
decompositions to code SL(2,R)-orbits according to the regions they visit, in comparison
with earlier coding schemes like Rauzy-Veech diagrams (see, e.g., [6, 8, 10]). This coding
would gives a new combinatorial approach to studying the monodromy representation for
the fundamental group of a stratum, an area of considerable interest [13]. It could also shed
light too on the monodromy kernel [22], which has not yet been geometrically understood in
the strata. Moreover, precise understanding of the Delaunay cells, their number, and their
relationships could lead to verification of the Kontsevich conjecture for new components of
strata, bounds on the rank of cohomology groups, and more.
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[37] Martin Möller. “Finiteness results for Teichmüller curves”. In: Ann. Inst. Fourier
(Grenoble) 58.1 (2008), pp. 63–83. issn: 0373-0956,1777-5310.

[38] Martin Möller. “Periodic points on Veech surfaces and the Mordell-Weil group over a
Teichmüller curve”. In: Inventiones mathematicae 165.3 (Apr. 2006), pp. 633–649. doi:
10.1007/s00222-006-0510-3.
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