
RESEARCH STATEMENT – SAM FREEDMAN

1. Introduction

I study Veech surfaces: Riemann surfaces with exceptionally symmetric flat structures that
generalize flat tori. They play a crucial role in understanding moduli spaces of flat surfaces, and
their study has led to developments in number theory, the dynamics of rational billiards, and
algebro-geometric properties of the moduli spaceMg of genus g Riemann surfaces. My research has
furthered our understanding of Veech surfaces from a range of perspectives, including dynamical
systems (periodic points of Veech surfaces) and complex algebraic geometry (families of Veech
surfaces).

After giving some background, I will describe how I will extend my previous work on classifying
periodic points to a variety of new Veech surfaces. Then I will discuss my progress on investigating
the geometry and topology of Veech fibrations, and how I will situate these families in the geography
of all complex surfaces.

2. Background

A translation surface (X,ω) is Riemann surface X with a holomorphic 1-form ω; the surface can
be presented as a union of Euclidean polygons with parallel opposite edges identified by translations.
Deforming the edges (in a way preserving parallel sides) produces neighboring translation surfaces
in the same stratum ΩMg(κ1, . . . , κs) of genus g translation surfaces with cone angles (κi + 1)2π at
the vertices. The strata assemble together into a bundle ΩMg over the moduli spaceMg of genus g
Riemann surfaces.
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Translation surfaces can admit affine automorphisms that preserve

the flat structure of ω. These automorphisms have a well-defined
linear part, giving a map D : Aff+(X,ω)→ SL(2,R). The collection
of all linear parts D(Aff+(X,ω)) is the Veech group SL(X,ω).

While most translation surfaces have a trivial Veech group [33],
there are rare examples with an exceptional number of symmetries
in the sense that SL(X,ω) is a lattice in SL(2,R). These highly symmetric translation surfaces are
Veech surfaces. The prototypical example of a Veech surface is a flat torus; we so far know of five
infinite families and three sporadic examples [29].

Translation surfaces have an SL(2,R)-action: a matrix A acts on (X,ω) by applying A linearly
to each polygon. Through deep theorems of Eskin–Mirzakhani [13], Eskin–Mirzakhani–Mohammadi
[14], and Filip [18], all SL(2,R) orbit closures are affine invariant subvarieties (AISs), well-behaved
geometric objects that are locally linear. When (X,ω) is Veech, the orbit SL(2,R) · (X,ω) is a
closed subvariety [37]; the projection of this closed orbit from ΩMg to Mg is a Teichmüller curve
C in Mg.

3. Periodic Points of Veech surfaces

A periodic point of a Veech surface (X,ω) is a point that has a finite orbit under the affine
automorphism group Aff+(X,ω). Examples include the zeros of ω, the 6 Weierstrass points of a
genus 2 translation surface, and points of a square torus with rational coordinates. These points
have appeared throughout Teichmüller dynamics, from counting sections of Veech fibrations to
solving finite-blocking problems in polygonal billiards (see, e.g., [2, 4, 1]). Exceptional periodic
points have even predicted the existence of higher-rank orbit closures before they were formally
discovered [1].
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In light of their prevalence and usefulness, we ask:

Question 1. Given a Veech surface (X,ω), what are its periodic points?

3.1. Algorithm for general Veech surfaces. Gutkin–Hubert–Schmidt [23] and Eskin–Filip–
Wright [12] showed that a non square-tiled Veech surface has finitely many periodic points. While
other authors had addressed specific Veech surfaces and computed their finite set of periodic points
[3, 38], there was no general method for finding the periodic points of an arbitrary Veech surface.
Zawad Chowdhury, Samuel Everett, Destine Lee and I then developed a general algorithm in [11]
for computing the periodic points on an arbitrary Veech surface; our proof of correctness is a new
proof that a non-square-tiled Veech surface has finitely many periodic points:

Theorem 1 (Chowdhury–Everett–Freedman–Lee [11]). There exists an algorithm that, given a
non-square-tiled Veech surface as input, outputs the periodic points on that translation surface.

Corollary 1. A non-square-tiled Veech surface has finitely many periodic points.

The algorithm in Theorem 1 prunes the set of candidate periodic points in three stages:
(1) It finds the points periodic under two multi-twists, constraining candidates to a finite set of

line segments. (This step uses that (X,ω) is not square-tiled.) These line segments arise
from the fact that a periodic point must have a rational height in each cylinder containing it;
when a point is contained in three generic cylinders, the three rational conditions combine
to determine a linear constraint.

(2) It constructs an automorphism φ ∈ Aff+(X,ω) that moves the set of line segments transverse
to itself; this restricts the candidates to the finite set of intersection points.

(3) It uses a well-known graph algorithm to determine which intersection points are periodic
under all of Aff+(X,ω).

3.2. Prym eigenforms. As an application of the algorithm in Theorem 1, we analyzed genus 3
Prym eigenform Veech surfaces [31] with a single cone point whose periodic points had not yet been
classified. After testing small complexity examples, we conjectured that the periodic points were
the fixed points of a certain Prym involution. In a second paper [20], I established this conjecture
not only for genus 3 Prym eigenforms, but also for the other minimal Prym eigenforms in genus 2
and 4; the genus 2 case is a new geometric proof of a theorem of Möller [35].

Theorem 2 (Freedman [20]). The periodic points of a non square-tiled Prym eigenform in the
stratum ΩMg(2g − 2) for 2 ≤ g ≤ 4 are the fixed points of its Prym involution.

The proof of Theorem 2 treats all three genera of Prym eigenforms in essentially the same manner,
shadowing the algorithm of Theorem 1. I start by proving a general lemma that classifies the points
interior to a horizontal and vertical cylinder that have a finite orbit under the two multi-twists. This
reduces the search space to a finite set of horizontal and vertical saddle connections at the boundary
of the cylinders. In the spirit of step (2) above, it remains to construct affine automorphisms that
move the false candidates to nonperiodic points. For this I repurpose McMullen’s butterfly moves: a
collection of GL(2,R)-renormalizations of the eigenform that exchange between different periodic
directions. For eigenform loci of sufficiently large complexity, I find surfaces that admit enough
butterfly moves to displace the candidate points, proving that only the fixed points are periodic. I
then rule out the nonfixed candidate points of eigenforms in the finitely many remaining loci using
our algorithm in Theorem 1.

3.3. Periodic points of other affine invariant subvarieties. With both an algorithm (Theorem
1) to compute periodic points, and the general theory I developed for Theorem 2 on Prym eigenforms,
I am in a strong position to classify periodic points on other affine invariant subvarieties. For
instance, there are Veech surfaces whose periodic points are not yet classified:
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Problem 2. Determine the periodic points of the remaining unclassified Veech surfaces: the Gothic
Veech surfaces, the remaining Bouw–Möller surfaces, and the three sporadic E6, E7 and E8 examples.

The Gothic Veech surfaces [15, 32] also come with involutions, mirroring Prym eigenforms, so
there are natural candidate periodic points to test with our algorithm. As for the remaining
Bouw–Möller surfaces, we plan to combine our newly established techniques with the previous work
of Apisa–Saavedra–Zhang [3] and B. Wright [38] on the (2, n) and (3, n) cases respectively.

We will also consider the notion of M-periodic points that generalize periodic points from Veech
surfaces to other affine invariant subvarieties M:

Problem 3. Classify the M-periodic points of higher-rank affine invariant subvarieties M, such as
Prym loci in nonminimal strata.

We propose to classifyM-periodic points by degenerating surfaces inM to simpler Veech surfaces.
This strategy proved effective when Apisa [2] used Möller’s [35] determination of periodic points
in genus 2 to classify M-periodic points of rank 2 eigenform loci in ΩM2. Analogously, we will
degenerate Prym eigenforms in nonminimal strata to the minimal Prym eigenforms classified in
Theorem 2, determining which points of the original eigenforms are M-periodic. I will draw from
my expertise analyzing nonminimal Prym eigenforms in my work with Julian Boulanger [6] that
shows there are no Prym eigenform Veech surfaces in ΩM3(2, 2).

4. Families of Veech surfaces

Let (X,ω) be a Veech surface with Teichmüller curve C →Mg. Every torsion free, finite index
subgroup of the mapping class group Mod(X) determines a manifold cover M̃ of Mg and a finite
covering B → C where B is a hyperbolic surface. Pulling back the universal family over M̃ to B,
and possibly passing to a finite cover, we produce a complex surface X→ B whose (semi-stable)
completion X̃→ B is a smooth 4-manifold. The manifold X̃ is a four real-dimensional fibration with
generic fiber a Veech surface; the exceptional fibers corresponding to the cusps of B are singular
with nodal singularities. In analogy with elliptic fibrations, where the generic fiber is an elliptic
curve, we call these families Veech fibrations.

Veech fibrations originated as a tool in Teichmüller dynamics when Möller [36] used them to
give a Hodge-theoretic characterization of Teichmüller curves. Other authors have used them for
constructing new Teichmüller curves [7], establishing non-varying properties for sums of Lyapunov
exponents [10], and classifying algebraically primitive Teichmüller curves [34, 28, 24].

Because of their widespread usefulness and concrete presentation in terms of Veech surfaces,
Veech fibrations are a natural class of smooth 4-manifolds for study further. To understand where
Veech fibrations sit in the geography of all complex surfaces, we must first address:

Question 4. Given a Veech fibration X̃→ B, how can we compute its topological invariants, such
as its fundamental group π1(X), and its complex-geometric invariants, such as its Chern numbers
c2

1(X̃) and c2(X̃)?

In the next subsection I will answer this question for the important class of algebraically primitive
Veech fibrations.

4.1. Algebraically primitive examples. Let X̃→ B be a Veech fibration with fiber (X,ω) and
Teichmüller curve C. Towards Question 4, Trent Lucas and I derived formulas for a variety of
invariants of X̃ → B, including the fundamental group, Betti numbers, Euler characteristic, and
signature, using earlier work of Chen–Möller [10]. Our explicit formulas depend on explicitly
computing the degree of the cover B → C, a task that is difficult for an arbitrary Veech fibration.

We focused on the level m congruence Veech fibrations X̃m → Bm, those corresponding to the
level m congruence subgroups of the mapping class group Mod(X). Computing the degree of the
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cover Bm → C in this situation amounts to compute the image of the mod m homology actions
ρm : Aff+(X,ω)→ Sp(H1(X;Z/mZ)).

This task is also difficult, as it relates to computing Kontsevich–Zorich monodromy groups, and
these are not well-understood (see, e.g., Filip [19, 17] and Matheus–Möller–Yoccoz [27]). But in
the case when (X,ω) is algebraically primitive, we determined the degree of the congruence covers
Bm → C, and we derived topological and complex-geometric information about the Veech fibration
X̃m:

Theorem 3 (Freedman–Lucas [21]). Let (X,ω) be a genus g algebraically primitive Veech surface
in one of the following families:

(1) the genus 2 Weierstrass eigenforms in ΩM2(2) with nonsquare discriminant [30],
(2) the regular n-gon surfaces with n a prime, twice a prime or a power of 2 [7], or
(3) the sporadic Veech surfaces E7 and E8 [26].

For a prime p ≥ 3 in an explicit infinite set depending on (X,ω), the degree of the congruence cover
Bp → C is |SL(2,Fpg )|. Moreover, the natural map π1(X̃p)→ π1(Bp) is an isomorphism and X̃p is
a minimal complex surface of general type.

The three families in Theorem 3 comprise all known algebraically primitive Veech surfaces. Key
to our arguments is that algebraically primitive surfaces admit real multiplication by their trace
field on the entirety of their first homology H1(X) [36].

We can use Theorem 3 to compute the Chern numbers for any explicit example of an algebraically
primitive Veech fibration. For example, we showed:

Theorem 4 (Freedman–Lucas [21]). Let (Yq, ωq) be the double regular q-gon surface of genus
g = (q − 1)/2 where q ≥ 5 is prime. Fix p ≥ 3 a prime such that the minimal polynomial of
4 cos(π/q)2 is irreducible over Fp, and let X̃q,p → Bq,p be the level p congruence Veech fibration.
Then

c2(X̃q,p) = dg + d(q − 3)
(1

2 −
1
q
− 1
p

)
, and c2

1(X̃q,p) = 2c2(X̃q,p)− 3d(q2 − 1)
4q .

The table below shows Chern numbers of level 3 Veech fibrations built from Weierstrass eigenforms
in family (1). Upon examining this data, Lucas and I discovered that Horikawa surfaces, a classified
family of general type complex surfaces, can arise as Veech fibrations:

Corollary 2 (Freedman–Lucas [21]). The level 3 congruence Veech fibration X̃3 → B3 of the double
regular pentagon surface is isomorphic to a Horikawa surface.

0 10000 20000 30000 40000
c2
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c2 1

BMY line

Noether line

Horikawa surface

The double pentagon Veech fibration is among
the simplest Horikawa surfaces and has been
well-studied [5].

4.2. Families over other affine invariant
subvarieties. Our work with Lucas [21] on
Question 4 considered Veech fibrations whose
base Teichmüller curves are algebraically prim-
itive. While this family is a rich class of exam-
ples, other important Veech surfaces, such as
square-tiled surfaces and genus 3 and 4 Prym
eigenforms, are not algebraically primitive. To
establish which complex surfaces can arise in
full generality, we must compute these other
fundamental groups, Chern numbers, and Kodaira dimensions. The primary difficulty is to:
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Problem 5. Compute the image of the representation ρm : Aff+(X,ω)→ Sp(H1(X;Fm)) for Veech
surfaces (X,ω) that are not algebraically primitive.

Analysis of the representation ρm in the non algebraically primitive case is more difficult because
non-primitive surfaces admit real multiplication on only part of H1(X). But there are techniques
from the algebraically primitive case, such as using Dickson’s criterion [22] to bound the image of
ρm, that do apply to general Veech fibrations.

Apart from Teichmüller curves, there are higher-rank affine invariant subvarieties in Mg, such as
loci of genus 2 Weierstrass eigenforms with a fixed discriminant, that have not yet been studied
from the modular point of view. We propose to apply our methods for studying Veech fibrations to
this much broader class of complex-geometric spaces:

Problem 6. Compute the Betti numbers, Chern numbers and Kodaira dimension of Veech fibrations
constructed from higher-rank affine invariant subvarieties.

The analogous representations ρm for higher-rank affine invariant subvarieties connect to recent
work describing the topology of strata of translation surfaces via their monodromy groups [8, 9].
Just as for Teichmüller curves, I expect that we can compute the higher Chern numbers of these
families in terms of the monodromy groups.

4.3. Mapping class groups. Mapping class groups are algebraic invariants that encode homeo-
morphisms of a manifold up to deformation; they are central to the study of real surfaces and the
moduli space Mg of genus g Riemann surfaces. In parallel to these developments, authors have
considered mapping class groups of complex surfaces, seeking to gain similar insights for 4-dimension
manifolds [16, 25]. Because we can understand Veech fibrations hands-on through the flat geometry
of Veech surfaces, we can “see” their symmetries and look for structure in their mapping class
groups. As a first step, I propose to:

Problem 7. Find explicit representatives of mapping classes of Veech fibrations.

For instance, elements of the translation group Aut(X,ω) act as translations on the fibers
and could give fiber-wise automorphisms. In another direction, when there is an isomorphism
π1(X̃) ∼= π1(B), as for the algebraically examples in Theorem 3, the Dehn–Nielsen–Behr theorem
yields a well-defined homomorphism

φ : Mod(X̃)→ Out(π1(X̃))
∼=−→ Out(π1(B))

∼=−→ Mod(B).
To use the well-known structure of mapping class group of the real surface B, we must establish:

Problem 8. For which Veech fibrations X̃→ B is the map φ : Mod(X̃)→ Mod(B) surjective or an
isomorphism?

I expect that main challenge will be to determine which mapping class of X̃ can be deformed to
preserve each of the Veech surface fibers set-wise.
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